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Abstract. By using the Lindblad theory for open quantum systems, an analytical expression of the tun-
neling probability through an inverted parabola is obtained. This penetration probability depends on the
environment coefficients. It is shown that the tunneling probability increases with the dissipation and the
temperature of the thermal bath.
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1 Introduction

Quantum tunneling with dissipation has been intensively
investigated in the last two decades [1–12]. Very interest-
ing is the discussion whether the dissipation suppresses
or enhances the quantum tunneling. Caldeira and Leggett
[1,2] concluded that dissipation tends to suppress quan-
tum tunneling. Using a different method, Schmid obtained
similar results in reference [13]. Widom and Clark [14] con-
sidered a parabolic potential barrier and found that dissi-
pation enhances tunneling. Bruinsma and Bak [15] also
considered tunneling through a barrier and found that
at zero temperature the tunneling rate can be either in-
creased or decreased by dissipation. Leggett [16] consid-
ered tunneling in the presence of an arbitrary dissipation
mechanism and found that, normally, dissipation impedes
tunneling, but he also found an anomalous case in which
dissipation assists the tunneling process. Razavy [17] con-
sidered tunneling in a symmetric double-well potential
and concluded that dissipation can inhibit or suppress
tunneling. Fujikawa et al. [18] also considered tunneling
in a double-well potential and found an enhancement of
tunneling. Harris [19] calculated the tunneling out of a
metastable state in the presence of an environment at
zero temperature and found that quantum tunneling is
enhanced by dissipation. In [20], Yu considered the tun-
neling problem in an Ohmic dissipative system with in-
verted harmonic potential and he showed that while the
dissipation tends to suppress the tunneling, the Brownian
motion tends to enhance it. In a series of papers [21,22],
Ankerhold, Grabert and Ingold have studied real time
dynamics of a quantum system with a potential barrier
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coupled to a heat bath environment, employing the path
integral approach. The conclusion drawn from these pa-
pers is that different authors have studied different prob-
lems using different methods. They obtained results which
in many cases present an evident contradiction.

In the present paper we study the tunneling through an
inverted harmonic oscillator potential in the presence of a
dissipative environment in the framework of the Lindblad
theory for open quantum systems, based on completely
positive dynamical semigroups [23–25]. We extend the
work done in some previous papers [26,27]. In [27] a simi-
lar problem was treated by using the path integral method
and numerical calculations. Our study can be applied to
problems of nuclear fragmentation, fission and fusion, con-
sidered as a tunneling process through the nuclear barrier
defined in the space of collective coordinates, like charge
and mass asymmetry or the distance between the fission
fragments.

For the inverted harmonic potential, the tunneling
problem in the framework of the Lindblad theory can be
solved exactly. In Section 2 we write the basic equations of
the Lindblad theory for open quantum systems and give
results for the coordinate and momentum expectation val-
ues and variances for the damped inverted harmonic os-
cillator. Then in Section 3 we consider the penetration of
a Gaussian wave packet through the potential barrier and
define the penetration probability. In Section 4 we analyze
its dependence on various dimensionless parameters which
enter the theory and show that the probability increases
with the dissipation and the temperature of the thermal
bath. A summary is given in Section 5.
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2 Quantum Markovian master equation
in Lindblad theory

The simplest dynamics for an open system which describes
an irreversible process is a semigroup of transforma-
tions introducing a preferred direction in time [23–25]. In
Lindblad’s axiomatic formalism of introducing dissipation
in quantum mechanics, the usual von Neumann-Liouville
equation ruling the time evolution of closed quantum sys-
tems is replaced by the following quantum master equa-
tion for the density operator ρ(t) in the Schrödinger pic-
ture [24], which is the most general Markovian evolution
equation preserving the positivity, hermiticity and unit
trace of ρ:

dρ(t)
dt

= − i
~

[H, ρ(t)]

+
1
2~
∑
j

(2Vjρ(t)V †j − V
†
j Vjρ(t)− ρ(t)V †j Vj). (1)

Here H is the Hamiltonian operator of the system; Vj ,
V †j are bounded operators on the Hilbert space of the
Hamiltonian and model the effect of the environment. We
make the basic assumption that the general form (1) of the
master equation with a bounded generator is also valid for
an unbounded generator.

As usual, we define the two possible environment oper-
ators V1 and V2, which are assumed linear in momentum
p and coordinate q, as follows [28,29]:

Vj = ajp+ bjq, j = 1, 2, (2)

with aj , bj complex numbers. The Hamiltonian H is
chosen of the general form

H = H0 +
µ

2
(qp+ pq), H0 =

1
2m

p2 + U(q), (3)

where U(q) is the potential. With these choices and with
the notations

Dqq =
~
2

∑
j=1,2

|aj |2,

Dpp =
~
2

∑
j=1,2

|bj |2,

Dpq = Dqp = −~
2

Re
∑
j=1,2

a∗jbj,

λ = −Im
∑
j=1,2

a∗jbj, (4)

where a∗j and b∗j denote the complex conjugate of aj
and bj , respectively, the master equation (1) takes the
following form [28,29]:

dρ
dt

= − i
~

[H0, ρ]− i
2~

(λ+ µ)[q, ρp+ pρ]

+
i

2~
(λ− µ)[p, ρq + qρ]− Dpp

~2
[q, [q, ρ]]

− Dqq

~2
[p, [p, ρ]] +

Dpq

~2
([q, [p, ρ]] + [p, [q, ρ]]). (5)

Here the quantum diffusion coefficients Dpp, Dqq, Dpq and
the dissipation constant λ satisfy the following fundamen-
tal constraints [28,29]: Dpp > 0, Dqq > 0 and

DppDqq −D2
pq ≥

λ2~2

4
· (6)

In the particular case when the asymptotic state is a Gibbs
state

ρG(∞) = e−
H0
kT /Tr e−

H0
kT , (7)

the coefficients for a harmonic oscillator potential have the
following form [28,29]:

Dpp =
λ+ µ

2
~mω coth

~ω
2kT

,

Dqq =
λ− µ

2
~
mω

coth
~ω

2kT
,

Dpq = 0, (8)

where T is the temperature of the thermal bath. The fun-
damental constraints (6) are satisfied only if λ > µ.

In the following we denote by σAA the dispersion (vari-
ance) of the operator A, i.e. σAA = 〈A2〉 − 〈A〉2, where
〈A〉 ≡ σA = Tr(ρA) is the expectation value of the opera-
tor A and Trρ = 1. By σAB = 〈AB +BA〉/2− 〈A〉〈B〉 we
denote the correlation of the operators A and B.

From the master equation (5) we obtain the follow-
ing equations of motion for the expectation values and
variances of coordinate and momentum:

dσq(t)
dt

= −(λ− µ)σq(t) +
1
m
σp(t), (9)

dσp(t)
dt

= −
〈

dU(q)
dq

〉
− (λ+ µ)σp(t) (10)

and, respectively,

dσqq(t)
dt

= −2(λ− µ)σqq(t) +
2
m
σpq(t) + 2Dqq, (11)

dσpp
dt

= −2(λ+ µ)σpp(t)−
〈

dU(q)
dq

p+ p
dU(q)

dq

〉
+ 2
〈

dU(q)
dq

〉
σp(t) + 2Dpp, (12)

dσpq(t)
dt

= −
〈

dU(q)
dq

q

〉
+
〈

dU(q)
dq

〉
σq(t)

+
1
m
σpp(t)− 2λσpq(t) + 2Dpq. (13)

For the harmonic oscillator with the potential U(q) =
mω2q2/2, the solutions of these equations of motion are
obtained in references [28,29]. In this paper we consider
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the tunneling through a potential barrier given by an
inverted harmonic potential (inverted parabola) with

U(q) = −mω
2

2
q2. (14)

The Hamiltonian H0 in equation (3) with the poten-
tial (14) can be regarded as the Hamiltonian of a harmonic
oscillator with an imaginary frequency iω and the equa-
tions of motion (9–13) for this potential are formally ob-
tained by performing the replacement ω → iω in the cor-
responding equations for the harmonic oscillator. These
equations of motion can be solved by using the same
method as in references [28,29] for the harmonic oscilla-
tor. Contrary to the situation of the harmonic oscillator,
where we have two cases, overdamped and underdamped,
for the inverted parabola such a distinction does not exist.
The solutions for the expectation values and variances of
coordinate and momentum coincide formally with the so-
lutions corresponding to the overdamped case of the har-
monic oscillator. For the expectation value of the coordi-
nate and momentum we obtain with ν ≡

√
ω2 + µ2:

σq(t) = e−λt
((

cosh νt+
µ

ν
sinh νt

)
σq(0)

+
1
mν

sinh νtσp(0)
)
, (15)

σp(t) = e−λt
(
mω2

ν
sinh νtσq(0)

+
(

cosh νt− µ

ν
sinh νt

)
σp(0)

)
. (16)

In the following we also need the solution for the variance
σqq , which is given by:

σqq(t) =
e−2λt

2ν2
{∆qq[(µ2 + ν2) cosh 2νt

+ 2µν sinh 2νt+ ω2] +
∆pp

m2
(cosh 2νt− 1)

+
2
m
∆pq(µ cosh 2νt+ ν sinh 2νt− µ)}+ σqq(∞), (17)

where

∆qq = σqq(0)− σqq(∞),
∆pp = σpp(0)− σpp(∞),
∆pq = σpq(0)− σpq(∞)

and

σqq(∞) =
1

2m2λ(λ2 − ω2 − µ2)
(m2(2λ(λ + µ)− ω2)Dqq

+Dpp + 2m(λ+ µ)Dpq), (18)

σpp(∞) =
1

2λ(λ2 − ω2 − µ2)
((mω)2ω2Dqq + (2λ(λ− µ)− ω2)Dpp

+ 2mω2(λ− µ)Dpq), (19)

σpq(∞) =
1

2mλ(λ2 − ω2 − µ2)
((λ + µ)(mω)2Dqq + (λ− µ)Dpp

+ 2m(λ2 − µ2)Dpq). (20)

Please note that in the case λ > ν

σq(t→∞) = σp(t→∞) = 0

and
σqq(t→∞) = σqq(∞).

In the case λ < ν we have

σq(t→∞), σp(t→∞)→ ±∞

and
σqq(t→∞) = ∞.

3 Tunneling through an inverted parabola

In order to calculate the tunneling probability through
the inverted harmonic oscillator potential (14), we assume
that initially the wave function of the system is a Gaussian
wave packet centered at the left of the peak of the potential
at q = 0, σq(0) < 0, with a momentum σp(0) > 0 towards
the potential barrier peak:

ψ(q) =
1

(2πσqq(0))1/4

× exp
[
− 1

4σqq(0)
(q − σq(0))2 +

i
~
σp(0)q

]
. (21)

Then the corresponding initial probability density is
given by:

ρ(q, t = 0) =
1

(2πσqq(0))1/2

× exp
[
− 1

2σqq(0)
(q − σq(0))2

]
. (22)

Like in [30–32], we can transform the master equation (5)
for the density operator of a particle moving in the poten-
tial (14) of an inverted parabola into the following Fokker-
Planck equation satisfied by the Wigner distribution
function W (q, p, t):

∂W

∂t
= − p

m

∂W

∂q
−mω2q

∂W

∂p

+ (λ− µ)
∂

∂q
(qW ) + (λ + µ)

∂

∂p
(pW )

+Dqq
∂2W

∂q2
+Dpp

∂2W

∂p2
+ 2Dpq

∂2W

∂p∂q
· (23)
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For an initial Gaussian Wigner function, the solution of
equation (23) is

W (q, p, t) =
1

2π
√
σ(t)

× exp
{
− 1

2σ(t)
[σpp(t)(q − σq(t))2 + σqq(t)(p− σp(t))2

− 2σpq(t)(q − σq(t))(p − σp(t))]
}
, (24)

which represents the most general mixed squeezed states
of Gaussian form. Here σq(t), σp(t) and σqq(t), σpp(t),
σpq(t) are the expectation values and, respectively, the
variances corresponding to the inverted parabola as given
partly in equations (15–17) and

σ(t) = σqq(t)σpp(t)− σpq(t)2. (25)

Since the dynamics is quadratic, then according to known
general results, the initial Wigner function remains Gaus-
sian. The density matrix can be obtained by the inverse
Fourier transform of the Wigner function:

〈q|ρ|q′〉 =
∫

dp exp
(

i
~
p(q − q′)

)
W

(
q + q′

2
, p, t

)
. (26)

Using equation (24), we get for the density matrix the
following time evolution:

〈q|ρ|q′〉 =
(

1
2πσqq(t)

) 1
2

exp
[
− 1

2σqq(t)
(
q + q′

2
− σq(t))2

− 1
2~2

(
σpp(t)−

σ2
pq(t)
σqq(t)

)
(q − q′)2

+
iσpq(t)
~σqq(t)

(
q + q′

2
− σq(t)

)
(q − q′)

+
i
~
σp(t)(q − q′)

]
. (27)

The initial Gaussian density matrix also remains Gaus-
sian, centered around the classical path, i.e. σq(t) and
σp(t) give the average time-dependent location of the sys-
tem along its trajectory in phase space. The wave function
starts as a Glauber wave packet at t = 0 on the left-hand
side of the barrier and evolves as a mixed squeezed state at
a later time. By putting q′ = q in equation (27), we obtain
the following probability density of finding the particle in
the position q at the moment t:

ρ(q, t) =
1

(2πσqq(t))1/2
exp

[
− 1

2σqq(t)
(q − σq(t))2

]
. (28)

This is a Gaussian distribution centered at σq(t), which
describes the classical trajectory of a particle initially at
σq(0), with initial momentum σp(0) and variance σqq(t).

Using equation (28), the probability for the particle to
pass to the right of position q at time t is given by

P (q, t) =
∫ ∞
q

ρ(q′, t)dq′

=
∫ ∞
q

1√
2πσqq(t)

exp
(
− (q′ − σq(t))2

2σqq(t)

)
dq′.

(29)

We define the tunneling probability P (t) as the probability
for the particle to be at the right of the peak at q = 0
(beyond the barrier top): P (t) = P (q = 0, t). We obtain

P (t) =
1√
π

∫ ∞
−σq(t)√
2σqq(t)

e−u
2
du

=
1
2

(
1− erf

(
− σq(t)√

2σqq(t)

))
, (30)

where erf(x) is the error function with erf(x) = −erf(−x)
and erf(∞) = 1.

From equation (30) we see that the probability P (t) de-
pends only upon the classical motion of the average value
of coordinate (wave packet center) and the spreading of
the wave packet in the direction of the barrier. The final
tunneling probability (barrier penetrability) is given by
taking the limit t → ∞ in P (t). In the present calcula-
tions we ignore the fact that a part of the wave packet has
already tunneled through the barrier at t = 0. In general,
this probability has a negligible value, but, in principle, in
order to find the net penetration probability, it should be
subtracted from the tunneling probability at time t.

4 Evaluation of the penetration probability
and analysis in dimensionless variables

We will show that since σq(t) and
√
σqq(t) are both

proportional to the same exponential factor as time ap-
proaches infinity, their ratio in (30) approaches a finite
limit, which determines the final tunneling probability. In-
deed, as t→∞, we see from equations (15) and (17) that
σq(t) and σqq(t) behave like

σq(t)→
e−(λ−ν)t

2mν
δ (31)

and

σqq(t)→
(

e−(λ−ν)t

2mν

)2

∆+ σqq(∞), (32)

where we have denoted

δ ≡ m(µ+ ν)σq(0) + σp(0) (33)

and

∆ ≡ m2(µ+ ν)2∆qq +∆pp + 2m(µ+ ν)∆pq . (34)
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Then we obtain the following finite limit as t→∞:

σq(t)√
σqq(t)

→
{
δ/
√
∆ if λ < ν

0 if λ > ν
(35)

and, therefore, the expression (30) leads to the final
penetration probability (P = P (t→∞))

P =

{
1
2 (1− erf(−δ/

√
2∆)) if λ < ν

1
2 if λ > ν

. (36)

In the case λ > ν, σq(t)→ 0 if t→∞, that is, the system
is located around the barrier, σqq(t) tends to a finite value
σqq(∞) for any initial kinetic energy and in this case P =
1/2. Let us consider the other case λ < ν. For δ = 0 the
trajectory tends to the top of the potential barrier and if
δ is different from 0, then σq(t) tends to ∞ or −∞. The
trajectory which starts on the left-hand side of the barrier
(σq(0) < 0) with a positive initial momentum σp(0) > 0
will stay on the same side for δ < 0 (and then σq(∞) →
−∞) and will cross the barrier for δ > 0, i.e. if the initial
kinetic energy allows to overcome the barrier (and then
σq(∞)→∞). For a general µ and any λ < ν, the particle
crosses the barrier when σp(0) > −m(µ + ν)σq(0) and
will stay on the same side when σp(0) < −m(µ+ ν)σq(0).
The barrier penetrability is larger than 1/2 if the particle
classically can overcome the top of the barrier, it is smaller
than 1/2 if the particle cannot cross the barrier and it
tends to 1/2 if the position uncertainty σqq is very large.

For µ = 0, the values of ∆ and δ become (ν = ω):

δ0 = mωσq(0) + σp(0) (37)

and

∆0 = m2ω2σqq(0) + σpp(0) + 2mωσpq(0)

− m2ω2Dqq +Dpp + 2mωDpq

λ− ω · (38)

The particle crosses the barrier if σp(0) > −mωσq(0)
and λ < ω. In this case, if λ increases, then the ratio
δ0/(2∆0)1/2 and the penetration probability P decreases.
This means that if dissipation increases, then the probabil-
ity P decreases up to a value of 1/2. If σp(0) < −mωσq(0),
the particle can not cross the barrier. In this case the pen-
etration probability P increases with the dissipation λ up
to 1/2. At λ ≥ ω the wave packet sticks in the barrier
region.

We now introduce dimensionless variables: z the scaled
initial position, v the scaled initial momentum, ε the scaled

dissipation coefficient and r the scaled inverse wave packet
size, defined as follows:

z =
σq(0)√
σqq(0)

, v =
σp(0)

mωσq(0)
,

ε =
λ

ω
, r =

√
~

2mω√
σqq(0)

· (39)

With these notations and considering a thermal bath mod-
eled by the coefficients of the form (8), the penetration
probability takes the following form for the case µ = 0:

Pµ=0 =
1
2

(
1− erf

(
− δ0√

2∆0

))

=
1
2

1− erf

− z(1 + v)
√

2
√

1 + r4 − 2ε
ε− 1

r2 coth
~ω

2kT


 .

(40)

We took into account that

σqq(0)σpp(0) = ~2/4 (σpq(0) = 0).

If µ = 0, then we have 0 < ε < 1.
For µ 6= 0, in the case of a thermal bath, the expres-

sion (34) takes the form (σpq(0) = 0)

∆ = m2(µ+ ν)2σqq(0) + σpp(0)

− ~m
ω
{µ(µ+ ν) +

ω2[λ2 + λ(µ+ ν) + µν]
λ2 − ω2 − µ2

} coth
~ω

2kT
·

(41)

With the notations (39) and introducing also the notation

γ =
µ

ω
, (42)

the penetration probability takes the following form:

Pµ6=0 =
1
2

(
1− erf

(
− δ√

2∆

))
(43)

with

see equation (44) below.

If µ 6= 0, the inequalities λ > µ (see Eq. (8)) and λ < ν
lead to the following restrictions on the dimensionless

δ√
∆

=
z(γ +

√
1 + γ2 + v)[

(γ +
√

1 + γ2)2 + r4 − 2(γ +
√

1 + γ2)
(ε2 − γ2)

√
1 + γ2 + ε

ε2 − γ2 − 1
r2 coth

~ω
2kT

]1/2
(44)
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variables:

γ < ε <
√

1 + γ2. (45)

The initial energy of the particle associated with the Gaus-
sian wave packet (21) is

E = 〈H〉|t=0 =
1

2m
σpp(0)− mω2

2
σqq(0)

+
1

2m
σ2
p(0)− mω2

2
σ2
q (0) + µσp(0)σq(0) (46)

and in terms of the dimensionless variables (39) it looks

E =
~ω
4r2

[r4 − 1 + z2(v2 − 1)] +
~µ
2
z2v

r2
· (47)

If E < 0, it is a sub-barrier initial energy and if E > 0,
it is an energy above the barrier. In terms of the same
dimensionless variables, the condition that a classical par-
ticle does not have enough initial kinetic energy to pass
the potential barrier can be written:

v > −1, if µ = 0 (48)

and

v > −(γ +
√

1 + γ2), if µ 6= 0. (49)

With these two conditions and by taking 0 < r ≤ 1 (which
assures that the initial fluctuation energy is negative), the
total initial energy (47) is always negative. This corre-
sponds to the case of the sub-barrier energy, relevant to
the quantum tunneling problem. The examples provided
in the following figures reflect just this situation.

For µ = 0, Figures 1 and 2 show the dependence of the
tunneling probability on the scaled dissipation ε and the
temperature T of the thermal bath, via coth(~ω/2kT ),
for fixed values of the scaled initial position z, momen-
tum v and wave packet size r. In the next four figures,
we consider µ 6= 0. Figures 3 and 4 show the dependence
of the penetration probability on the scaled dissipation
and on the parameter γ for a fixed scaled initial position
z, momentum v and wave packet size r at the tempera-
ture T = 0. In Figures 5 and 6 we give the dependence
of the penetration probability on the scaled dissipation
and temperature at fixed values of z, v, r and γ. The pre-
sented dependence of the penetration probability on these
variables can be summarized in the following conclusions.

(1) When the scaled initial momentum |v| is increasing,
then P is increasing up to 1/2 if the particle does not
have enough kinetic energy to pass the potential bar-
rier. The same conclusion is valid for the variable r, i.e.
if the initial width of the Gaussian packet is decreas-
ing, then the penetration probability is increasing.

(2) If the scaled initial position |z| is increasing, then P is
decreasing from 1/2 to 0 if the particle does not have
enough kinetic energy to pass the potential barrier.

Fig. 1. Dependence of tunneling probability P on the scaled
dissipation ε = λ/ω and the temperature T of the thermal
bath, via coth(~ω/2kT ), for µ = 0 and for fixed values of the
scaled initial position z = −3, scaled initial momentum v =
−0.5 and scaled inverse wave packet size r = 0.5.

Fig. 2. Same as in Figure 1 but with z = −3, v = −0.5 and
r = 0.1.

(3) The penetration probability is increasing from 0 to 1/2
with dissipation and with coth(~ω/2kT ) and, there-
fore, with the temperature. For the case µ 6= 0, the
probability P is decreasing with µ.

In conclusion, the dependence of the tunneling proba-
bility on dissipation is not simple. When the particle does
not have enough kinetic energy to pass the parabolic bar-
rier, which is the relevant case to the quantum tunneling
problem, the dissipation enhances tunneling.

5 Summary

In the framework of the Lindblad theory for open quantum
systems, we have formulated the motion and the spreading
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Fig. 3. Dependence of tunneling probability P on the scaled
dissipation ε and parameter γ = µ/ω for the temperature
T = 0 of the thermal bath and for fixed values of the scaled
initial position z = −3, scaled initial momentum v = −0.5 and
scaled inverse wave packet size r = 0.3.

Fig. 4. Same as in Figure 3 but with z = −9, v = −0.9 and
r = 0.3.

of Gaussian wave packets in an inverted oscillator poten-
tial. We have obtained analytic solutions of evolution in
time of the wave packets and of the barrier penetrability.
Since the wave packets spread in time according to the
same law of evolution as their center moves, the value of
barrier penetrability is in general different from 1/2. The
inverted oscillator potential has a physical important rel-
evance, since it can constitute a guide how to treat more
physically realistic potentials, like third order and double-
well potentials [27,33] or joined inverted parabola and har-
monic oscillator potentials [34], in order to be applied in
nuclear fission and in molecular or solid state physics.

Fig. 5. Dependence of tunneling probability P on the scaled
dissipation ε and the temperature T of the thermal bath, via
coth(~ω/2kT ), for γ = 7.99 and for fixed values of the scaled
initial position z = −3, scaled initial momentum v = −0.5 and
scaled inverse wave packet size r = 0.5.

Fig. 6. Same as in Figure 5 but with γ = 0.97, z = −9,
v = −0.9 and r = 0.5.
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